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ABSTRACT: This article deals with the stress–strain behavior of two viscoelastic poly-
mers, polypropylene and polyamide 6, filled with rigid particles in the range of axial
strain of 0 to 8%. These materials, when subjected to a constant strain rate test lose
stiffness via two mechanisms: filler–matrix debonding and the viscoelastic softening
of the matrix. A model that combines the concepts of damage mechanics and the time
dependence of the interfacial strength is described and compared to the experimental
results of polypropylene and polyamide 6 filled with up to 50 vol % of untreated and
silane-treated glass beads. The matrix behavior is described in terms of an empirical
equation selected to fit the stress–strain behavior of neat polymers in the range of
strain rates between 0.12 and 0.5% s01 and strains between 0 and 8%. The stiffness
of the damaged, partially debonded composite is calculated using the Kerner–Lewis
equation assuming that debonded particles do not bear any load. The model is able to
generate stress–strain curves that are in good agreement with the experimental data.
The void volume attributable to debonding calculated using the model is much smaller
than the experimental total determined void volume (which is a sum of several deforma-
tion mechanisms). q 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2013–2024, 1997
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INTRODUCTION secant moduli of the composite and of the matrix
offers a simple method to detect and follow the de-
bonding process in filled plastics and possibly inIn the previous article1 we discussed the contribu-
other multiphase materials.tion of the filler–matrix debonding to the results of

In this work we analyze the debonding processthe constant strain rate tensile test for the case
in polypropylene and polyamide 6 filled with glasswhen the matrix is viscoelastic. Two methods of
beads in terms of a model that uses concepts ofidentification of the onset of debonding were exam-
damage mechanics and that takes into accountined: the gradual loss of stiffness during the test,
the viscoelastic nature of the matrix polymers.and the tensile dilatometry. It was concluded that
Several approaches were proposed to describe thealthough the tensile dilatometry appears more
experimental data in materials damaged by thestraightforward, its results are difficult to interpret
debonding process. One of the more simple meth-because the volume change due to debonding is only
ods consists in the direct application of the dam-a small part of the overall volume change recorded
age mechanics.2 The debonding-induced damageduring the test. The loss of stiffness during the ten-
is quantified with the help of the damage parame-sile test expressed, for example, as a ratio of the
ter D defined as follows:
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2014 MEDDAD AND FISA

ylene filled with glass beads.6 The predicted
stress–strain behavior deviates from the experi-
mental results, particularly after the elastic
stage. This was attributed to the uncertain value
of adhesion energy term in the equation governing
the debonding process.

Recently, a mathematical model developed
from the tensile stress–strain and from the vol-
ume strain data has been proposed by Zezin.7 It
describes the damage accumulation in terms of
debonded filler fraction. Other studies published
recently present debonding models without com-
paring them to the experimental results. For ex-
ample, the theory developed by Zhao and Weng8

to describe the debonding process in a ductile elas-
tic composite containing aligned oblate inclusions,
uses a statistical function to model the breakage

Figure 1 Stress s versus e strain and Esm versus e
of filler/matrix bonds. The constitutive model de-curves of neat PP and PA6.
veloped by Ravichandran and Liu9 is used to illus-
trate the behavior of a soft, nearly incompressible
elastic matrix filled with rigid particles. It as-where EV represents the modulus of the damaged

(i.e., partially debonded) material while E0c is the sumes that the composite behavior, in the absence
of any damage, is linear elastic. The model consid-initial modulus of the undamaged composite.

Newaz and Walsh3 used this concept to follow the ers the debonding-induced damage as an isotropic
function, depending on an internal variable.debonding in sand and ash-filled epoxy resins. Be-

cause these materials, neat matrix, and compos- In summary, the simple methods do not yield
satisfactory results because they do not take intoites are inherently elastic, any deviation from lin-

ear elasticity can be safely attributed to strain- account one or more of the critical features of the
composite behavior. Moreover, the more generalinduced damage (of which filler/matrix debonding

is considered predominant, particularly in the low methods for mathematical description of fully or
partially bonded composites are very awkwardstrain range). Using the ‘‘load–unload’’ tensile

test, Newaz and Walsh have shown that the dam- because of the filler agglomeration, thermal
age parameter D can be related to the debonding
process. However, the physical significance of the
results is not entirely satisfactory, principally be-
cause this approach fails to take into account the
fact that the loss of stiffness cannot be attributed
exclusively to the reduction of the effective load-
bearing section. In addition to this, as the debond-
ing progresses, only one, the more rigid phase,
is being excluded from the load bearing and the
effective filler concentration in the remaining ma-
terial is reduced.

The model developed by Anderson and
Farris,4,5 which was applied to a glass-bead-filled
polyurethane elastomer, calculates the nonlinear
stress–strain behavior of the filled polymer un-
dergoing debonding using an energy balance
based on the first law of thermodynamics. This
model has been used to predict the loss of stiff-
ness, assuming separately either a reduction of Figure 2 Stress–strain and secant modulus–strain
the effective filler concentration or an addition of curves of neat PP. (1) Maxwell model [eq. (6)] ; (2)
voids, both resulting from debonding. This model Menges model [eq. (7)] ; (3) model described by eq. (8).

Experimental curves are also shown ( —).has been recently applied to high-density polyeth-
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FILLER–MATRIX DEBONDING 2015

Table I Material Constants for PP and PA6

Maxwell’s Model Menges Model
[Eq. (6)] [Eq. (7)] Eq. (8)

PP E0m Å 1.75r109 Pa E0m Å 1.75r109 Pa E0m Å 1.58r109 Pa
tr Å 2.23 s Dm Å 40.47 a Å 0.00018 s01

b Å 055.25 Pa01

c Å 4.22 10011 Pa01 s01

d Å 00.00018 s01

PA6 E0m Å 1.1 109 Pa E0m Å 1.1 109 Pa E0m Å 0.98 109 Pa
tr Å 3.12 s Dm Å 25.50 a Å 0.00019 s01

b Å 056.58 Pa01

c Å 4.86 10011 Pa01 s01

d Å 00.00019 s01

The correlation factors of Maxwell model is equal to 0.85 for PP and 0.87 for PA6, of Menges model is equal to 0.72 for PP
and 0.64 for PA6, and of eq. (8) is equal to 0.94 for PP and 0.93 for PA6.

stresses, stress concentration, and innumerable Esm Å 1.57 GPa; (2) a nonlinear zone character-
ized by a gradual rapid decrease of the secantother material heterogeneities that cannot be

fully and accurately described. modulus; (3) at e Å 7.5%, the stress–strain curve
reaches a maximum which, by convention, corre-A satisfactory model describing the stress–

strain behavior in a viscoelastic material filled sponds to yield; and (4) beyond e 7.5% the nominal
stress remains approximately constant up towith rigid particles that become progressively sep-

arated from the matrix should have following fea- strain of about 20%.
The behavior of neat polyamide 6 is similar totures: (1) a realistic description of the matrix be-

havior as a function of stress, strain, and time; that of polypropylene (Fig. 1). The secant modu-
lus Esm assumes constant value of 0.92 GPa up to(2) ability to take into account the change of the

composition of the load-bearing material as the the axial strain e Å 0.73%. However, in the range
of strains studied (e õ 8%), the polyamide 6more rigid filler particles become excluded and

are replaced by effective voids; and (3) ability to stress–strain curve has not reached a maximum
and the nominal stress continues to rise, albeit atdescribe the debonding process as a function of

variables that can be readily measured (stress, a slow rate.
There is a vast body of literature on the me-strain, and time).

This article presents one model that was built chanical behavior of viscoelastic materials. We
have examined the suitability of several simpleto include these three features. The model has

been used to calculate the stress–strain behavior models available for the description of the stress–
strain behavior of polypropylene and polyamideof polypropylene and polyamide 6 containing vari-

ous concentrations of untreated or silane-treated 6 in the range of strains and strain rates used (0–
8% and 0.12–0.5% s01) .glass beads. Good agreement between the calcu-

lated and experimentally determined results For a viscoelastic material, the strain rate e
h

was achieved. All the experimental details con- imposed during a constant strain rate test can be
cerning the materials used, sample preparation, decomposed into ‘‘elastic’’ and ‘‘inelastic’’ additive
and mechanical testing can be found in the pre- components:
vious article.1

e
h
Å e

h e / e
h n Å const. (2)

where e
h e and e

h n represent the elastic and inelasticMODEL FOR MATRIX BEHAVIOR
strain rates, respectively.

Then the following elastic strain rate e
h e can beIn the previous article we have shown that in the

defined asrange of axial strains studied (0 to 8%), the curve
of neat polypropylene (PP) could be characterized
by three parts (Fig. 1): (1) a linear elastic part e

h e Å
s
h

E0m
(3)

up to e Å 0.75% with a constant secant modulus
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2016 MEDDAD AND FISA

stress–strain behavior of plastics solicited in the
tensile mode, which was proposed by Menges and
Schmactenberg.10 For semicrystalline polymers at
temperatures above the glass transition tempera-
ture, it has the following form:

s Å E0me

1 / Dme
(7)

where the E0m represents the initial modulus (at
e r 0) and Dm is a function of strain rate. The
best correlation for e

h
Å 0.122% s01 is also shown

in Figure 2 (curve 2, where the correlation factor
is equal to 0.72). In addition to the absence of
the constant stiffness region, this model with the
optimized constants Dm and E0m does not reach
the constant stress plateau, which we observe inFigure 3 Stress–strain and secant modulus–strain
polypropylene.curves of neat PA6. (1) Maxwell model [eq. (6)] ; (2)

Having examined a number of other, more com-Menges model [eq. (7)] ; (3) Model described by eq. (8).
Experimental curves are also shown ( —). plex models we have finally adapted the following

relation for the inelastic strain rate:

where E0m is the initial modulus and s
h

represents
e
h n Å a exp(bs ) / cs / d Å e

h
0 s

h

E0m
(8)the rate of stress change.

The inelastic strain rate e
h n as a function of ap-

plied stress s and time t is Experimental stress–strain data collected at
three testing speeds (0.0833, 0.166, and 0.33 mm

e
h n Å f (s, t ) (4) s01) , which correspond to strain rates of 0.12,

0.24, and 0.5% s01 , were used to optimize the val-
One of the simplest viscoelastic materials, the ues of constants shown in Table I. It can be seen

Maxwell model, is defined by two constants, the that a numerical integration of eq. (8) using the
initial modulus E0m and a single relaxation time optimized constants yields stress–strain (s vs. e )
tr . In the Maxwell body undergoing a constant and secant modulus–strain (Esm vs. e ) (curves 3),
strain rate test, the inelastic strain rate e

h n is which exhibit all important features of the experi-
mental curves, namely constant stiffness at small

e
h n Å s /E0mtr (5)

The stress–strain curve is given by

s Å e
h
E0mtrF1 0 expS0e

e
h
tr
DG (6)

Using eq. (6) and a curve-fitting method, appro-
priate values of E0m and tr can be found for each
strain rate with a relatively good correlation fac-
tor (see, e.g., curve 1 for e

h
Å 0.122% s01 (Fig. 2),

where the correlation factor is equal to 0.85). It
is clear, however, from the Esm versus presenta-
tion that the Maxwell model, and for that matter
any other linear viscoelastic model, cannot ac- Figure 4 Schematic representation of a filled polymer
count for the initial constant stiffness zone (0 subjected to uniaxial tension. (a) Well-bonded compos-
õ e õ e0) . The same deviation holds for one of ite; (b) partially debonded composite; and (c) fully de-

bonded composite.the most widely used empirical models for the
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FILLER–MATRIX DEBONDING 2017

Table II Parameters Used to Calculate the During the constant strain rate tensile test
Initial Composite Mode Modulus E0c (de /dt Å const), the measured stress s follows
from Eq. (11) the relation

Parameters PP PA6
ds
dt
Å d (Escre )

dt
Å er

dEsc

dt
/ Escr

de
dt

(9)E0m (GPa) 1.62 0.88
A1 1.68 1.90
B1 0.85 1.03

where Esc is the secant modulus of the composite.c 0.60 1.04
The composite modulus (Esc ) decreases as the de-
bonding progresses and as the accumulated in-
elastic strain of the matrix (en ) increases. The par-

strains (Figs. 2 and 3, curve 3). This model [eq. tially debonded composite containing a volume
(8)] was selected as adequate for the description fraction f of the filler (of which fd is debonded:
of the matrix behavior. 0 ° fd ° f ) is considered to consist of three com-

ponents: (1) matrix, which has the secant modu-
lus E versus e dependence shown in Figures 2 orDebonding Model
3, and which can be described by eq. (8) using

In the preceding article1 we have shown that the parameters of Table I; (2) bonded filler [volume
small strain behavior of glass-bead-filled polypro- fraction (f 0 fd ) ] ; and (3) debonded filler—each
pylene was that of fully bonded composite, which vacuole containing a debonded filler particle be-
for volume fractions of up to and including 0.2 haves as a void.
obeys the Kerner–Lewis equation with constants The modulus of such hybrid material can be
calculated from the properties of the components. described by the Kerner–Lewis equation11:
At higher filler loadings (up to f Å 0.5) the
Kerner–Lewis equation can be used as an inter- Esc Å EsmrE1rE2 (10)
polation formula with constants optimized to fit
the experimentally determined E0c versus f de-
pendence. In the fully debonded state the Kerner–
Lewis equation can still be used to calculate the
material stiffness considering each vacuole con-
taining a debonded glass bead as a void. The ma-
terial is considered to behave as a foam containing
void volume fraction equal to f.

The process that is modeled is illustrated in
Figure 4. A composite material containing a vol-
ume fraction f of filler is subjected to a constant
strain rate test. The following is assumed: (1) Ini-
tially all filler particles are well bonded to the
matrix (bonded filler volume fraction fb Å f [Fig.
4(a)] . The material behavior can be described by
the Kerner–Lewis equation with the constants
listed in Table II (see below). (2) Upon straining,
the filler particles become progressively debonded
(fb Å f 0 fd , fd being the debonded filler volume
fraction). The debonded particles do not bear any
load [Fig. 4(b)] . (3) The completely debonded

Figure 5 Stress–strain curves calculated using eqs.composite fb Å 0, fd Å f ) behaves as a foam
(9) and (14) (see text): (m) matrix; (b) fully bondedcontaining volume fractions of voids equal to fd . composite; (d) fully debonded composite. Curves 1–5

Its behavior can also be described by the Kerner– were calculated using the following values of constants
Lewis equation [Fig. 4(c)] . (4) The debonding K and B: (1) K Å 3.04 1002 MPa01 s01 , B Å 0; (2) K
rate (dfd /dt ) depends on the applied stress and Å 2.03 1003 MPa01 s01 , B Å 0; (3) KÅ 6.80 1004 MPa01

on the number of particles available for debonding s01 , B Å 0; (4) K Å 1.2 1004 MPa01 s01 , B Å 0; (5) K
Å 2.03 10014 MPa01 s01 , B Å 1 MPa01 .(f 0 fd ) .
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2018 MEDDAD AND FISA

The constants B and K depend on the tempera-
ture, the material molecular structure, and on the
nature and number of defects. It should be noted
that although this and other equations (e.g.,
Zhurkov–Bueche16) relating the time to failure
to the applied stress have a theoretical basis, they
are often considered as interpolation formulas of
semiempirical nature—useful for mathematical
expression of experimental data. Applying the
Bartenev’s concept to a filled material, we assume
that the time to failure of the filler/matrix inter-
face can be described by eq. (13). The probability
of debonding is proportional to 1/tf . The debond-
ing rate dfd /dt is then considered to be propor-
tional to Ks

V
exp(Bs

V
) (the constants K and B are

related to the overall behavior of the filled mate-
rial rather than only to that of the single particle/
matrix interface, s

V
is the effective stress—see be-

low) and to (f 0 fd ) .Figure 6 Debonded filler fraction fd calculated using
eqs. (9) and (14) as a function of strain e. The curves
are numbered as in Figure 5.

dfd

dt
Å (f 0 fd )rKrs

V
exp(Brs

V
) (14)

where E1 represents the relative modulus of the
still bonded filled material: The effective stress s

V
, which acts only on the

matrix and on the still bonded filler, can be related
to the measured stress s (which is calculated us-

E1 Å
1 / A1rB1r(f 0 fd )
1 0 B1rCr(f 0 fd )

(11) ing the entire sample cross section, including its
debonded portion), using the strain equivalence
principle.2 A material containing a filler fractionwith constants A1, B1 and C determined by fitting (f 0 fd ) but no voids will have a modulus E *sc :the experimental small strain composite modulus

Esc versus filler volume fraction f dependence. The
modulus E2 is the relative modulus of the foam with
a void fraction equal to fd . E2 is then given by

E2 Å
1 0 fd

1 0 B2rCrfd
(12)

with B2 Å 01/A1 . It is worth noting that the
Kerner–Lewis equation and other expressions of
this type have been successfully applied to hybrid
materials12 and to high-density foams.13

Considering the heterogeneous nature of mate-
rials under consideration it seems reasonable to
adapt Bartenev’s equation14,15 for time to failure,
tf , of a material subjected to an effective stress,
s
V
. This equation, originally developed for materi-

als containing defects, is written here in a simpli-
fied form:

Figure 7 Relative modulus of composite (Esc /Esm ) cal-
culated using eq. (11) as a function of strain e. Thetf Å

exp(0Brs
V
)

Krs
V

(13)
curves are numbered as in Figure 5.
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The volume increase due to debonding, zd , can
also be calculated assuming, for example, that
each void created by debonding of a spherical par-
ticle (diameter d ) is an ellipsoid with its two
shorter axes equal to d and its longer axis equal
to d r [1/ (e0 ed ) ] , where ed represents the strain
at which the particle becomes debonded.7 It fol-
lows that

zd Å *
e

0

fdde (19)

Model Verifications

The debonding process modeled with the help of
eqs. (9), (10), and (14) using the materials con-

Figure 8 Volume fraction of debonded glass beads, fd, stants of neat and filled polypropylene (Tables I
as a function of strain for PP filled with different glass and II) and several arbitrarily selected values of
concentration silane treated (T) and untreated (NT); cal- K and B leads to stress strain curves shown in
culated from experimental data using eq. (10). Figure 5. Two extreme cases are considered: (1)

When the value of the exponential term constant
B is set to 0, the debonding rate is proportional
to the effective stress s

V
. The measured stress s

E *sc Å EsmrE1 (15) versus e function deviates from that of the fully
bonded composite at a relatively low strain and

According to the strain equivalence principle, moves to the completely debonded state over a
broad range of strains (see also Fig. 6 for the cor-

e Å s
V

E *sc

Å s

Esc
(16)

This leads to

s
V
Å s

E2
(17)

Since

dEsc

dt
Å dEsc

dfd
r

dfd

dt
(18)

a simultaneous solution of eqs. (9) and (14) can be
obtained using known values of Esm, de/dt, and f
and using equations (10) – (12), (17), and (18).

Solution of eqs. (9) and (14) using the fourth-
order Runge Kutta method yields the value of the
secant modulus Esc and of the debonded fraction
fd . To determine the appropriate values of K and
B , the calculated results are compared, with the Figure 9 Volume fraction of debonded glass beads, fd,
help of the Marquardth–Levenberg algorithm, to as a function of strain for PA6 filled with different glass
the values of fd computed from the experimental concentration silane treated (T) and untreated (NT); cal-

culated from experimental data using eq. (10).stress–strain data using eq. (10).

/ 8e99$$4405 07-03-97 20:12:38 polaa W: Poly Applied



2020 MEDDAD AND FISA

Bartenev-type equation can cover the range of sit-
uations likely to occur in glass-bead-filled visco-
elastic materials. The extreme case of the debond-
ing occurring at constant effective stress (curves
5, Figs. 5–7) will certainly not be found in real
materials where the dispersed phase distribution
is at best uniformly random, particles are of differ-
ent sizes, local stress fluctuations are caused not
only by the material inherent heterogeneities but
also by residual stresses that vary throughout the
thickness, and where the debonding will, there-
fore, occur over a broader range of stress and
strain.

In the previous work we concluded that in
glass-bead-filled polypropylene, in which the com-
pletely debonded state was reached, the Kerner–
Lewis equation could be used to predict the stiff-
ness of fully bonded and fully debonded material.

Figure 10 Stress–strain curves, predicted by the It seems reasonable to assume that the same
model and experimental ( —) of 20 vol % filled PP; equation can be also used to describe the interme-
treated (T) and untreated (NT) glass. diate state of partial debonding.1 Knowing the se-

cant modulus of the composite, the fd versus e
dependence can be determined from eq. (10). Fig-

responding fd vs. e curves). With a high value of ure 8 shows the results for filled polypropylene.
K (curve 1) the s versus e curve of the composite The fd versus curves, particularly those for lower
will cross that of the matrix when the matrix is glass concentrations (f ° 0.2) exhibit two linear
still elastic and join that of the debonded compos- parts, the first one characterized by a rapid in-
ite at a strain well below the yield. The value of crease of fd at úe0 , the second plateau region as
K used to draw curve 2 in Figure 5 was selected the material approaches the fully debonded state.
so that the debonding process would be complete The fact that fd values calculated for higher
in the range of strains studied experimentally (0
to 8%). In this case, the stress–strain curve
reaches a maximum at about 1.5% strain when
about a third of all filler particles have debonded.
However, Figure 7 shows that the Esc /Esm curves
do not have a low strain zone of constant stiffness
that was observed in filled polypropylene and
polyamide 6. (2) With a very high value of B , the
debonding will occur at nearly constant effective
stress (s

V
) . Curve 5 corresponds to this case. The

stress–strain curve (s vs. e ) follows that of a well-
bonded composite until the onset of debonding
(with the combination of K and B used at s Å s

V

Å 32 MPa). With the reduction of the load-bearing
section the applied (measured) stress (s ) de-
creases (while s

V
Å const) until the fully debonded

state is reached at s Å 18 MPa and e Å 6%). The
apparent ‘‘yield’’ of the composite (maximum of
the value s vs. e curve) corresponds to the onset
of debonding rather than to the inherent yield of
the matrix material. The corresponding fd versus
and Esc /Esm versus curves are shown in Figures Figure 11 Stress–strain curves, predicted by the
6 and 7. model and experimental ( —) of 25 vol % of treated (T)

and untreated (NT) filled PA6.The shapes of these curves suggest that the
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Table III K and B Values of Polypropylene (PP)/Glass Beads Composites

K 1 102 MPa01 s01 B 1 102 MPa01

Glass Content
(vol. %) NT T NT T

10 9.0 7.0 0.07 0.02
20 4.30 3.10 0.11 0.09
40 2.10 1.47 1.92 1.45
50 1.65 1.15 4.80 4.2

NT, untreated glass beads; T, silane-treated glass beads.

strains do not always coincide with the exact glass portional to the filler volume fraction f. On the
other hand, the exponential term constant B in-content is caused by the differences between the

measured stress borne by the composite at a given creases with the filler concentration. The evolu-
tion of K and B constants with the filler volumestrain and that calculated from the stress borne

by the matrix assuming complete debonding at fraction is consistent with the debonding oc-
the same strain [eq. (12)] . For example, at e curring over a narrow effective stress s

V
range in

Å 7.5%, the measured stress of polypropylene con- the more highly filled composites. The agreement
taining 20 vol % of untreated beads is 23 MPa. between the experimental stress–strain curves
Using this value and the stress borne by the neat and those computed using the procedure de-
matrix at e Å 7.5% to calculate the debonded filler scribed in this article is quite good (Fig. 10 for
fraction gives fd Å 0.18. Had the experimental polypropylene, f Å 0.2 and Fig. 11 for polyamide
value of stress at e Å 7.5% been only 1 MPa lower, 6, f Å 0.25). It confirms that the Bartenev equa-
complete debonding (fd Å 0.2) would have been tion can be used to describe the debonding process
calculated. Applying the same procedure to filled not only when the matrix is elastic17 but also
polyamide 6 yields the results shown in Figure 9. when the composite nonelasticity is caused by a
As mentioned in the preceding article, in filled combination of the debonding and of the matrix
polyamide 6 the level of adhesion is higher even viscoelasticity. Moreover, the Bartenev equation
without the surface treatment, and the results appears to be able to cover the cases of both com-
point to incomplete debonding. plete and partial debonding (polypropylene and

The stress–strain curve of filled material con- polyamide 6, respectively). When the calculated
sisting of a matrix defined by eq. (8) and undergo- results are expressed in the form of the Esc /Esm

ing the debonding process [eqs. (10) and (14)] ratio, an equally acceptable agreement with the
can be calculated and compared to experimental experimental results is obtained (Fig. 12).
stress–strain curves. Optimized values of K and The debonding model can also be used to pre-
B are listed in Table III for polypropylene and in dict the stress–strain behavior of filled polymer
Table IV for polyamide 6. The value of the con- at a different strain rate. This is shown in Figure
stant K decreases with the filler volume fraction 13, where the stress–strain curves of neat poly-
for all four cases considered (polypropylene and propylene (experimental and modeled using con-
polyamide 6 each filled with treated and un- stants of Table I) and of filled polypropylene using

the values of K Å 4.3 1002 MPa01 s01 , and of Btreated beads); in fact, it is nearly inversely pro-

Table IV K and B Values of Polyamide 6 (PA6)/Glass Beads Composites

K 1 102 MPa01 s01 B 1 102 MPa01

Glass Content
(vol. %) NT T NT T

5 9.60 8.0 0.52 0.085
25 1.80 1.40 6.5 0.28
40 1.0 0.80 11.0 0.88

NT, untreated glass beads; T, silane-treated glass beads.
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Figure 14 Debonded filler fraction, fd , as a functionFigure 12 Calculated (rrr) and experimental ( —)
of strain, e, calculated from experimental s versus eEsc /Esm versus e curves of 20 vol % filled PP and 25 vol
data using eq. (11) and those predicted by the model% filled PA6.
(NT rrr, T —) for filled PP f Å 0.2).

Å 0.11 1002 MPa01 determined at e
h
Å 0.122 1002

evaluate the debonding process at different strainbut used to calculate the stress strain curves of
rates should be the subject of further studies.the composite at e

h
Å 0.5 1002 . The strain rate

The volume strain due to debonding zd can beeffect is particularly pronounced at high strain
calculated with the help of eq. (19) and using fdbecause, unlike yield stress, the initial modulus
versus e function (Figs. 14 and 15) obtained eitherdoes not change. The applicability of the model to

Figure 13 Experimental ( —) and calculated (rrr) Figure 15 Debonded filler fraction, fd , as a function of
stress–strain curve of neat polypropylene and filled strain, e, calculated from experimental s versus e data
polypropylene (f Å 0.2). Effect of strain rate (a) e

h
using eq. (13) and those predicted by the model (rrr) for
filled PA6 (f Å 0.25) treated (T) and untreated (NT).Å 0.12% s01 and (b) e

h
Å 0.5% s01 .
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NOMENCLATURE

A1 constant, Kerner–Lewis [eq. (11)]
a , b , c , d constants [eq. (8)]
B debonding rate constant [eq. (14)]
B1 , B2 constants, Kerner–Lewis equation

[eqs. (11) and (12)]
D damage parameter [eq. (1)]
Dm Constant [eq. (7)]
d filler particle diameter
EV modulus of damaged material [eq.

(1)]
E0c , E0m initial modulus of composite and of

matrix
E1 , E2 relative moduli of the filled and of the

fully debonded composite [eq. (11)
and (12)]

Esc , Esm secant moduli of composite and of ma-
Figure 16 Total volume strain z (experimental) and trix
debonded volume zd calculated using eq. (18) as a func- value of composite modulus used toE *c
tion of strain-filled PP (NT) and filled PA6 (T and NT). calculate effective stress s

V
[eq.

(15)]
C crowding factor
K debonding rate constant [eq. (14)]
t time (independent variable)

from the experimental data and eq. (10) or from tf time of failure [eq. (13)]
the model. The results are very similar. The calcu- tr relaxation time [eq. (4)]
lated zd versus e curves can be compared to the e axial strain
total volume strain recorded during the test (z ed strain at which particles become de-
vs. e ) , as shown in Figure 16. The comparison bonded
suggests that in the range of strains where the e0 strain at which debonding starts
debonding is initiated and where the rate of de- strain ratee

h

bonding is highest (e.g., for polypropylene, f elastic and inelastic strain ratee
h e , eh nÅ 0.2, at 0.4% ° e ° 1.5%) the volume strain f, fb , fd filler volume fraction, overall (f ) ,

due to debonding is only a small part of the total bonded (fb ) , and debonded (fd )
volume strain and, due to the experimental error, s: nominal stress
would be difficult to extract from the experimental rate of stress changes

h

z versus e curves. effective stresss
V

z total volume strain
zd volume strain due to debonding

CONCLUSION
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